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ABSTRACT

The purpose of this investigation was to determine analytically the
molecular incidence rates on the various surfaces of the space simulator.
The mathematical model of the space simulator consists of two concentrically
located spherical surfaces corresponding to the chamber wall outside and to
the vehicle inside. The analysis is divided into two phases.

Phase I deals with conditions of uniform pumping and outgassing on
each surface. A square pulse of outgassing is assumed to occur and the total
number of molecular hits is determined for each surface. These results are

extended to a steady state uniform flow and the molecular incidence rates are
obtained.

Phase II is an analysis of the nonuniform case introduced by surface
discontinuities of axiosymmetric type. The procedure followed is to deter-
mine the various probabilities that a molecule leaving a surface will hit
spherical zones on either surface. Using these probabilities the molecular
incidence rates can be determined. While the probabilities have been found,

analytic expressions for molecular incidence determination are very difficult
to obtain.

The problem, therefore, was approached from a computer point of view
enabling us to obtain computer solutions with a high degree of accuracy.
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SYMBOLS

Subscripts v and ¢ refer to vehicle and chamber wall, respectively. In case
we specify a portion on either of these two suriaces, v and c will be employed

accordingly.

a_ = pumping coefficient on surface x (where x = v or c)

Px = probability that a molecule leaving surface x will hit surface y

y (=cor v) without an intermediate collision. Clearly Pvc' 1, va =0

H = total number of molecular hits against the non-pumping surface y due

Xy to a flow originated at surface x.

Hx = total number of molecular hits against the non-pumping portion of
surface x (x = v or ¢)

Mx(n) = npumber of molecules pumped out on surface x during the interval
nr<t<(n+l)y, n=1,2,. . .

M.x = total number of molecules pumped out on surface x

fx(n) = number of molecules leaving surface x during the interval
n<t<(m+l)t, n=l, 2,, . .

Fx = gteady state uniform flow per unit area per unit time originating at
surface x

R.x = rate of molecular incidence on surface x per unit area

r, = radius of surface x

4 = angle between the tangent vector to the vehicle and the radial vector

both vectors drawn from a point on the chamber wall,

In considering the probability ny of a point p (see Figures 2,3,4,5,6,7)

2] -
|4

CO -
P

2] =
[¢]

GG -
o

latitude of the point p

boundary of the surface region on y illuminated from p

latitude on surface y

subregion of the illuminated region on y bounded by Cg_ and/or 9°
for which the latitude 6 of any point in that subregion satisfies
the relation 9290
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N2

Lim CeI

Lim Coy

Spherical Zone Probabilities

= probability that a molecule departing from a point on surface x

with latitude 6, will hit the surface region on surface y bounded
below by the la%itude 6,. This region may or may not be illuminated
completely from that point (see Figures 8 - 15).

probability that a molecule departing from a spherical zone X
will hit the spherical zone Yj'

number of molecules leaving the spherical zone Xy during
nr<t<(ml)r

i

i'th spherical zone on surface X

spherical zone on the chamber wall whose upper boundary is the
discontinuous line.

Single Surface Discontinvity

a_ for all i
v

a 1<i<N

c =
1

a, n
2

1

L HISI<2N

flow rate per unit area introduced on the part of the chamber
wall for which a, =a
i 1

flow rate per unit area introduced on the part of the chamber
wall for which a = a
¢4

flow per unit area introduced on the vehicle

[

usual cartesian coordinate system

usual spherical coordinate system

complement of €

same as ¢

spherical zone on either surface bounded by the latitudes 9i

and 6
]

latitude of discontinuous line on chamber wall

number of spherical zones of a hemisphere
y/ 00

lower latitude of the I'th spherical zone
maximum latitude of Cog

lower latitude of Cor
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1.0 INTRODUCTION

As a necessary consequence of the space age, it has become mandatory
to plan for ground testing of space vehicles, components and materials. The
duplication of all the spatial environments is obviously impossible. Many
papers have been written defining those environments which could be simulated
and the degree to which simulation is required. Among those listed as neces-
sary and feasible is the low pressure environment of outer space. It is
frequently stated that a pressure of 103 Torr is sufficient to simulate the
thermal radiation environment and the high electrical impedance of space.
This statement alone does not define where the pressure is measured, nor in
fact what is meant by pressure in the highly directional conditions of both
true space and a space environmental simulator. A serious evaluation of the
nature of the molecular flux in both cases is necessary in order to evaluate
what is meant by simulation.

1.1 THE VEHICLE IN SPACE

Two altogether different gaseous sources surround the vehicle in space.
First, there is the natural enviromment which was there prior to the entry
of the space vehicle, and secondly, the gas sources which have been contribu-
ted by the vehicle.

The atmosphere of the planet earth at altitudes above 1500 lkm consists
primarily of hydrogen ions, decreasing in density with increase in altitude.
Below this level, the atmosphere consists principally of oxygen and nitrogen
in atomic, ionized, or molecular states, depending on the altitude. Between
200 and 1500 km the density decreases with increasing altitude from about
1010 ¢o 103 particles per cubic centimeter. The corresponding mean free paths
range from a few miles to several hundred thousand miles, distances which are
huge relative to the dimensions of any space craft. The velocity of these
molecules ranges from 1 to 2 km/sec. Yet, the velocity of an earth satellite
ranges from 7.5 to 11 km/sec. The vehicle then appears to be rushing through
a relatively stationary low density gas medium, most of the collisions being
on the leading edge of the space craft. We note then that the molecular in-
cidence rate, and the pressure, depends on the velocity of the vehicle and
varies over the surface of the vehicle,

In addition to the planet atmosphere, the sun is thought to emit a
variable stream of protons and electrons (solar wind) having a density of
600 to 10,000 protons per cubic centimeter near the earth. The velocity of
these protons varies from 500 to i800 km/sec. gepending on the solar activity.
The incidence rate is from 5 x 101V to 2 x 10! particles per second per
square centimeter, which is comparable to the incidence rate of molecules
from the planet atmosphere at high altitudes., Since the velocity of the
solar wind is so much higher than that of the vehicle, the collisions are all
on the side facing the sun. The extremely high energy is sufficient to cause
sputtering or other surface phenomena. Again we note that there is no uni-
formity over the surface of the vehicle, nor can we simply define a pressure
equivalent of altitude.
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In addition to the environmental gases, the vehicle itself is a major
source of gas, in the form of outgassing and leakage. This gas is given
off by the vehicle with thermal energles relative to the vehicle. The
outgassing occurs in all directions, but may well vary over the surface of
the vehicle, depending on the variations in the vehicle structure and mater-
ial composition. The outgassing products will travel many miles in a
straight line before making collisions with an environmental molecule, hence
for all practical purposes, the molecules which leave the vehicle are per-
manently gone. Space may therefore be considered as pumping molecules as
fast as they are produced. This pumping action is not related to the con-
ventional concept of effusion velocity of an orifice of a fixed speed per
unit area, as no fixed area of space can be defined as the pumping surface.

In almost all space vehicle situations, the outgassing of the vehicle
represents a far greater density than that contributed by either the planet
environment or the solar wind. Hence, the gas density surrounding the
vehicle is almost entirely made up of the composition of the outgassing pro-
ducts. Yet this gas is all moving away from the vehicle and does not con-
tribute to the gas returning to the vehicle. The returning gas is still
defined by the velocity of the vehicle and the normal environment through
which it is moving.

1.2 THE VEHICLE IN A CHAMBER

When a vehicle is placed in a space simulation chamber, it is again
exposed to two different sources of gas: 1) The natural environment or
background of the chamber, and 2) The gas contributions due to the out-
gassing and leakage of the vehicle.

For true duplication of the atmosphere of space, the chamber back-
ground should match that of the upper atmosphere in gas type, density and
energy. In addition, it should be properly oriented to account for the
relative velocity of the vehicle through the satationary gas, and the solar
wind. While such conditions are not completely impossible, they are suffi-
ciently difficult and expensive, that realistic evaluations are required to
determine the necessity of such duplication. 1In the normal space chamber,
the residual gas is made up of the outgassing products of the walls of the
chamber and leaks which may exist to the outside atmosphere or to various
internal fluid sections such as cryogenic lines. The composition of this
gas will vary in different chambers, and may include such gas types as:
water vapor, hydrogen, carbon dioxide, carbon monoxide, nitrogen and he%ium.
The gas is not ionized, and in general is at a temperature of about 100°K.
In addition, there may be directional effects in the event that discontinu-
ities exist on the chamber wall. For example, the presence of a large area
solar simulator may contribute a high outgassing rate from a particular
section of the chamber wall.

When the vehicle is in a chamber, just as when it is in space, the
outgassing of the vehicle is the predominate gas present. However, in the
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case of the chamber an altogether different situation exists. In order to
duplicate the effectively infinite pumping speed of outer space the chamber
must have walls which are perfect condensers for all incident molecules.
Since such perfect condensers are not presently feasible, a great majority
of the outgassing from the vehicle is reflected from the chamber wall and
returns to the vehicle. In almost all instances, this returning gas flux
is far larger than the original chamber background. Again we note that
this gas flux does not have the characteristic properties of the permanent
space background. The gas is predominately water and nitrogen. The tempera-
ture is between 100 and 300°K. Anomalous directional effects may exist if
large areas of non pumping walls are present.

The foregoing differences between a chamber and space may not be of
importance in the superficial condition of simulating for heat transfer and
electrical discharge effects. However, if any surface phenomena is involved,
such as friction or sputtering, entirely different results may be obtained
in the two cases. -

1.3 MOLECULAR KINETICS

Considering the foregoing differences between true space and so-called
space simulators, it is apparent the simple question 'What altitude has been
simulated?'" is almost impossible to define. 1In the simplest case it creates
a serious controversy of philosophy, measuring equipment, and people. The
Molecular Kinetics program was started to study the various problems of
gas-vehicle collisions in space and in a chamber, to produce a yardstick
for measuring simulation, and to define the effects or limitations of vari~
ous chamber parameters on the degree of simulation achieved. This program
is divided into a number of different phases, each covered in a different
report. The common denominator of all phases of the Molecular Kinetics
program is the dealing with highly directional gas flows, in terms of measur-
ing, controlling, or defining simulation.

In order to derive a language to be used in the interpretation of
space simulation, and which is compatible with the parameters present in
space simulator, it is first necessary to define the ground rules to be
used. We first note that the vehicle is the point of interest for dis-
cussing simulation, and further it is the molecules arriving at the vehicle
which are of importance. Any measurement or consideration of molecular
fluxes or pressures on the chamber wall are of importance only in so far as
they can be interpreted at the vehicle proper. The second important factor
to be determined is the term to be used for discussing gas particles in the
simulator. Three different terms are immediately apparent: pressure,
density, and particle flux.

While density is very meaningful for the random gas in space in the
absence of a vehicle, it has little meaning for the vehicle when a large
amount of outgassing products from the vehicle are included in the measure-
ment. The density concept does not define the direction of the gas and
hence cannot be related to the molecules striking the vehicle, either in
space or in a chamber.
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A consideration of the earlier discussions on the extreme directional
effects both in space and in a chamber indicates that molecular incidence
and energy level are the important factors in assessing simulation. It is
apparent that there is a considerable difference in the temperatures in
space and in a simulator. A theoretical assessment of the temperature of
the molecules received by the vehicle in a space chamber is almost impossi-
ble due to the variations in the temperature within the chamber and the
differences in the accommodation coefficient for different gases. While
pressure is related to both energy and incidence rate, the true measurement
of pressure is likewise a very difficult problem. From both the analysis
and the measurements point of view it is far easier to consider the rate at
which molecules are striking a surface. Except for cases of extreme energy
(such as the solar wind) the surface reactions are more dependent on the
gas type than on the variations of energy which exist. For these, and
other reasons which will be more apparent in the different reports, the
concept of molecular flux has been chosen for all analysis. Molecular flux
is defined as the number of molecules per square centimeter per second
arriving or leaving a given surface.

1.4 MOLECULAR FLUX DISTRIBUTION

This part of the Molecular Kinetics program has to do with the mathe-
matical analysis of computing the molecular flux on every part of the space
vehicle and the chamber walls as a result of outgassing occurring from
either the vehicle or the chamber wall. The program further considers the
effects of a surface discontinuity, such as a solar region, on the flux
distribution. 1In solving this problem probability equations were first der-
ived for an axial symmetry, and equations were generated for the limiting
conditions of every possible configuration. In all cases a cosine distribu-
tion was assumed for the leaving molecules. The gereral problem of a single
surface discontinuity was then handled by means of a computer program. The
program considers the case of a spherical vehicle in a spherical chamber,
one of which contains a spherical cap of different properties. The surfaces
are then divided into circular sections about a common axis congruent with
the axis of the single surface discontinuity. A value of sticking coeffi-
cient and outgassing rate is assigned to each surface. The computer program
counts the molecules arriving and leaving each and every surface until a
steady state flow condition is obtained. This final value then defines the
molecular flux to the different parts of the system as a result of the
assumed outgassing rates.
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2.0 COSINE DISTRIBUTION

In the molecular migration from one surface to another, it will be
assumed that all molecules follow a '"Cosine Distribution'; that is, the
probability that a molecule will travel in a certain direction when it leaves
from a point on a surface is proportional to the cosine of the angle between
this direction and the normal to the surface at the point in question. Thus,
molecules have the greatest tendeucy to leave a surface in a direction normal
to the surface. The statistical concept of this law is presented in the
following discussion.

Let dA, be a surface element on a surface S, and let us assume that it
is required %o find the probability that the molecular flow emitted from that
surface element will hit a specified area A, on a surface S,. If the element
area dA, is taken sufficiently small we may speak, in a sense, of a point p
instead of the element dA, as if the total flow from dA, was emitted from the
point p. If a sphere S o% arbitrary radius r (unit rad}us will be convenient)
is constructed with center the point p, the directional vector from the point
p to the boundary of area A, will describe a closed curve s on the surface S.
Let A be the area enclosed by s. If dA is an area element of A we have

dA = r2c056d®d6

Let 6 = £(®) be the equation of the curve s. The angleﬂbetween the
normal to S, at p and the vector to any point of s from p is 5-6. Since we
assume a cosine distribution it follows that the molecular flow through dA
will be

Krzcosesin9d¢d9

dA Kcos(%-e)

Krzsinacosadﬁda

where

o= %—9, B=¢ and K is a proportionally constant

Th
4 3-£(8)
(Total Flow thru A) = [dB[ Kr>cosas i mda
o
On the other hand

R

(Total Flow thru hemisphere) = fag/ Krzcosasinwdz = Knrz

o
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Then the probability P of hitting the area A from the point p is

2-£6)
o (Total flow thru A 21
P (Total flow thru hemisphere = fdﬁfo cosdls in0d

Thus, the probability that a molecule emitted from a point on a sphere of
radius r, will hit an inside sphere of radius r, is

1 2 7y 2
P== [ dBf cosasinadx = sin“y
0 o
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3.0 UNIFORM PUMPING

The objective of this section is to determine the rate of molecular
incidence on either surface under the most simplified conditions. 1In this
analysis, the most simplified model of space simulator is considered; i.e.,
a spherical test vehicle located concentrically in a spherical test chamber.
The walls of both the vehicle and the chamber are assumed to have uniform
properties and the pumping coefficients on each of these two surfaces are
assumed uniformly distributed, To be more specific, if we define the
pumping coefficient a by:

a = A1/A
where A, is the pumping portion of area A, a_ remains constant throughout

the surface x., Furthermore, in order to covir every speclal case we consider
the general case where a, # a, # 0,

The analysis is made on the basis of a pulse of molecules being admitted
uniformly from either the vehicle or the chamber wall or both surfaces. The
results, however, are equally applicable to a steady state flow as it will be
shown in a derivation below.

With this mathematical model we have

2
Pcv = gin y = P, Pvc =1

3.1 DIRECTIONAL FLOW (PULSE)

3.1.1 Difference Equations
The following difference equations are easily derived

fv(n+1) = P(l-av)fc(n) 3.1)

fc(n+2) = (l-ac)(l-P)fc(n+1)+(1-ac)fv(n+1) (3.2)

Substituting 3.1 into 3.2 we obtain

fc(n+2)-(l-ac)(l-P)fc(n+1)-(1-ac)(l-av)Pfc(n) = 0 (3.3)

The general solution of 3.3 is

n n
1 +-C2r2 (3.4)

fc(n) = Clr
where C, and C, are arbitrary constants which have to be defined from the

boundat% condi%ions, and r, and r, are the roots of the characteristic equation
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V() = £~ (1-a ) (1-P)r- (1-a ) (1-a )P = 0 (3.5)

Boundary Conditions

If the flow is introduced on both surfaces, £ (1) will not depend on
f (0) exclusively but on both f (0) and f 0). 1I1f Ehe flow is introduced
ofi surface x only then £ (0)=0 Cfor y # xy In any case we assume f (0) and
fc(l) given covering thu? all special cases,

Then from 3.4 by setting n = 0,1 we obtain the following system of
equations

fC(O) = C1 + C2

fc(l) = Clr + Czr2

(3.6)

Determining the constants C1 and C2 from 3.6 and putting them in 4)
we obtain finally

£ (O, 1, (c, e ] £ (1) (r,"r,"
£ ) =<—L12 1 2 - —— (3.7)
27T 2"t

However the number of molecules leaving the chamber wall during
nr<t<(nm+l)r is the same as the number of molecular hits on the nonpumping
part of the chamber wall during nr<t<(m+l)r. Hence, the total number of
molecular hits on the chamber wall is

fc(l)-rlngc(o)

- §=1f¢(n) = (1-r;) (1-r,) (3-8
Similarly, from equation 3.1 and 3.8 we obtain
H =2 of,(o+l) = P(l-a )z o £ (n) 3.9
f (1)-r,r, £ (0)
c 1'2°¢c
= P(l-av) (l-rl)(l-rz) + fc(O)
£,(0) [1-(x #r,)] +£ (1)
= P(l-av) (1-r1$?1-r2)

P(l-a ) [H_ + fc(O)]
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Another form of equations 3.8 and 3.9 in terms of £ (0) and £ (0) can
be obtained by making the following substitution

fc(l) - (l-ac)(l-P)fc(0)+(1-ac)fv(Q)
= (r1+r2)fc(0)+(1-ac)fv(0)

Then 3.8 and 3.9 become

(r1+r2-r1r2)fc(0)+(1-ac)fv(0)

Hc = (1_r1) (1-r2) (3.10)
f (0)+(1-a )£ (0)
__c c’"v P(l-a )

3.1.2 Special Cases
Two special cases are of interest, namely,

fc(l) = (l-P)(l-ac)fc(O) = (r1+r2)fc(0), fv(O) =0

£,.(1) = (1-a )£ (0) » £,(0) = 0

Substituting these two equations in equations 3.8 and 3.9 or just simply
setting £ (0) or £ (0) equal to zero in equations 3,10 and 3.1] we obtain the
following special dases.

r,tr,-r
H 1" 2715

ce T (7T (1) £.(0) (3.12)

£ (0) =0
P(l-a ) v

" QUer )(l-r ) £.(©

(1-a )
H = —————o
ve (1-r1)(1-r2)

(3.13)

£,(0) (3.14)
£,.(0) ~ 0
-r.r

1°2
ti:;;szij;zs fv(O) (3.15)
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3.1.3 Molecular Pumping

The number of molecules pumped on either surface during nr<t<(n+l)r is
given by:

M (n) = 77— £ (n) (3.16)
c
aV

M (n) = Ta, £,(n) (3.17)

The total number of molecules pumped is

bod c

M, -n§1 M (n) = 3~ H (3.18)
= c
w av

Mv =n=1 Mv(n) = 1-av Hv (3.19)

Note that we must have
Mc + Mv = fc(o) + fv(o)

since eventually all the introduced molecules must be pumped out, This can
be verified to be the case.

3.2 STEADY STATE UNIFORM FLOW

The results obtained in 3.1 can be extended to the case where a steady
state molecular flow is established instead of a pulse under the following
assumptions.

a) The rate of molecular incidence is determined after a long
period of time since the time when the uniform steady state flow was initiated.

b) Time duration between two successive hits of each molecule is
taken to be a statistical average time interval .

Consider now a square pulse of flow into the system of time duration
starting at t = 0 and suppose that we want to determine the number of molecular
hits during the time interval nr<t<(mtl)rt.

According to assumption b), the number of molecule hits during the time
interval nr<t<(m+l)r will depend on how many molecules are present in the
space simulator during the time interval (n-1)t<t<nr. Thus, our problem is
to determine the number of molecular hits f(n) during nt<t<(ntl)7 due to a

10
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square pulse established during the time interval 0<t<r, or saying the same
thing in a different way, to find the number of molecular hits during 0<t<r
due to aquare pulse established -nt ago. If we had two identical pulses
established at t = nt and t = -(ntm)T, each pulse of duration v then by super-
position, the total number of molecular hits during O<t<r due to these two
pulses will be f(n)+f(mm). Now we are ready to pass to a steady uniform
flow. If the flow is considered to consist of square pulses, the total number
of molecules present during the time interval O<t<t is

o0
Zof(n) where N is very large
n=

1f, however, f(n) converges very rapidly (as indeed is the case) we may
replace N by infinity. Then

N
b f(n)A«Z £(n)
n=0

Incidentally, it is obvious that any transient conditions of the flow at the
beginning will have negligible effects.

Now let H be the number of molecular hits during 0<t<r due to Z f(n)
molecules present during =-7<t<0. Then the rate of molecular n=0
incidence during O0<t<r is H.

T
3.2.1 Rate Determination of Molecular Incidence
Clearly
_ 2
fc(O) = (1 ac)FcT4nrc
f (0) = (1-a_)F té4nr 2
v viTv v

Substituting these in equations 3.10 and 3.11 we obtain

(r1+r2-r1r2)Fc+(1-av)FvP

Rc = (l-rl)(l-rz) 3.2.1)
(1-a )F +(l-a )P(l-a_)F
c’"c c viv

R, = (1_r1)(1_r2) (3.2.2)

11



AEDC-TDR-63-88

3.2.2 Special Cases of Rate Determination

a) fv = 0 (flow originated at chamber wall)
. (r1+r2-r1r2)Fc ,
c (1-t,)(1-1,) (3.2.3)
1 2
(l1-a )F
¢’ ¢
Y T Trp ey (3.2.4)

1f a, = 0, equations 3.2.3 and 3.2.4 reduce to

(l-ac)Fc
Rc = Rv = —a (3.2.5)
c

b) fc = 0 (flow originated at vehicle)
(1-a )PF
e —Y Y
R = T (1) (3.2.6)
1 2
r.2,F
_ 172w
Ry = (l-rl)(l-r2 (3.2.7)

If a, = 0, equations 3.2.6 and 3.2.7 reduce to

PF_
R, = ;:— (3.2.8)
(1-a_)PF
[ v
R, = ——ac (3.2.9)

3.3 RESUME

The results obtained by admitting a square pulse of molecular flow on
either surface are represented by equations 3.8 and 3.9 or 3.10 and 3.11 and
special cases are represented by equations 3.12 - 3,15, The total number of
molecules pumped followed immediately from equations 3,18 and 3.19. Then the
transition from a pulsed to a steady state continuous uniform flow was made
in section 3.2 and the rates of molecular incidence were determined from
equations 3.2.1 and 3.2.2, Particular cases appear in section 3.2.2. This
completes Phase I of the analysis of the project.

12
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4.0 SINGLE SURFACE DISCONTINUITY

A surface discontinuity is established by either a discontinuity in
the molecular flow or discontinuity in the pumping coefficient or both.
Specifically, the function representing a discontinuous flow or a discontinu-
ous pumping coefficient will be in the form of a step function., Further, the
discontinuous line or lines on a surface will be a circle or parallel circles
on the surface. One line discontinuity will be referred to as '"single sur-
face discontinuity" and many line discontinuity as "multiple surface discon-
tinuity'". Except for these discontinuities, the molecular flow as well as
the pumping coefficient will be assumed uniformly distributed on each surface.
The spherical configuration of the chamber-vehicle system and the types of
discontinuities considered give rise to an axiosymmetric case which simpli-
fies somewhat the mathematical analysis of the problem. As a result of this
axiosymmetry, it is intuitively true that the distribution of molecular hits
on a surface x depends only on the angle 6 between the axis of symmetry and
the radius vector from the co-center of the system to any point on the sur-
face x.

The following analysis deals with a single surface discontinuity on
the chamber wall separating two spherical caps. The molecular flow and the
pumping coefficient in each cap are uniformly distributed but differ from one
cap to the other.

4.1 ANALYSIS APPROACH TO THE PROBABILITY EQUATIONS OF MOLECULAR TRANSFER

The mathematical analysis of the single surface discontinuity is divided
into two parts. Part I deals with setting up the various probability equa-
tions of molecular migration from one surface to specified regions on the
same surface or on another surface. These regions are spherical caps bounded
below by a latitude 6,. Then the probability that a molecule of a surface
will hit a spherical zone on either surface will be the absolute value of the
difference of two probabilities associating the point p with two spherical
caps. Accordingly, there are three cases discussed.

The first case is when the point p is considered on the chamber wall
and the specified region on the vehicle.

The second case is when both the point p and the specified region are
on the chamber wall.

The third case is when the point p is considered on the vehicle and
the specified region on the chamber wall. Thus, Part I will supply us all
the information needed to proceed to Part II.

Part 11 deals with computer solutions of the problem. Both surfaces
are divided into a sufficiently large number of spherical zones and the
molecular flux density on each spherical zone on both surfaces is determined
at any time interval. The purpose of these solutions is to provide us with

13
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sufficient information so that we can determine the molecular flux distribu-
tion and the incidence rate at various parts of the vehicle and chamber wall
as a result of two different steady state uniform flows, one introduced at
one part of the discontinuous surface and the other on the other part of the
discontinuous surface.

4.1.1 From the Chamber Wall to the Vehicle

The transformation of coordinates from one orthogonal system to another
can be accomplished by means of the following table

i 3 K
Py 1 ox i S-) 'S 0 Y-} 1
hy 3 X ha 3
kN L ox 1 oy 0 S-} 1
Pl % | w ® | W (4.1)
Py 1 ox 1 oy 1 2z
hy dy hy 9y hy oy

Ehere i, J, K are unit vectors in the direction of x, y, z in one system and
a, b, ¢ are unit vectors in the directions of &, B and y in the other system,
while h, h8, hy are defined as:

=98 =9 =98
ha'aa: hB‘aB: h7—37

Now, let P be a point on the chamber wall with position ¢_ and 6, and let
@8,y be taken in the directions of increasing ¢, 6 and r at P, “Then y
coincides with the normal to the surface at P drawn outwards, and the plane

(¢, B) becomes the tangent plane at P. The element of length on a sphere of
radius r is given by

dsl2 = r2coszed®2+r2d62

The element of length at P is given by ds2 = dr2+ds 2 where ds1 is an arc.

element on the sphere passing through P. 1

Hence

ds2 = dr2+r2coszed¢2+r2d92

14
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and K = rcosf, b = r, hy = 1
follow immediately,
The equation of a sphere is
X=1r Eosocosei+sin<bcos€j+sin91€l

Then on the sphere at P

dx/da = -r sindcosb dy/dx = r cosdcosd
Ox/B = =-r cosdsind Jy/dB = -r sin®sind
dx/dy = cosdcosd dy/dy = sinfcos6
dz/da = 0, 0z/3B = r cosf, dz/d = sind
and the table (4.l1) becomes
1 J K
a -sind cosd 0
) -cosdsiné -sin®dsind cos6 (4.2)
< cosdcosh sindcosb sind

As a result of axiosymmetry, the probability that a molecule will hit the
spherical zone (6@,, GJ) is independent of &. Thus we may set & = O in the
table (4.2)to obtgin

i J K
a 0 1 0
b -8ing 0 cosé (4.3)
P P
< cosf 0 sind
p P

In order to preserve the notation used previously in connection with this
project, & will denote the angle between the radius vector from P and -c and
B will be the angle between a and the projection of the radius vector from P
on the plane (a,b).

Then (see Figure 1) by means of table (4.3) we obtain

X=r sin@cosegz (4.4)
+r [iéos&cose sind +sinb cosei] b
o P o P
r

+r cosOcoseocosep+sin9°ain6p:]

15
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;1 = Rcosy cosﬁsinf;+sinﬁsinfg-cosfi] (4.5)
Now let the heads of vectors x and ; coincide. They ; = PO + X which ylelds

y =1 sin¢cosegz (4.6)

+r [}cos¢cose sin® +siné cosé ] b
° P o p
+ {rEoscbcose cos@ +sinb sin@} - }Z
o P o p
The intersection of C and 90 can be found if we set ;l =y

Then we obtain

a) sindcos = cosycosp

b) -cos¢cos6°s1n9p+sineocosep = cosysinB 4.7)
¢) cosdcosd cosd +sind siné_ = siny
o p o P
from 4.7c we obtain
cosd = —siny tan6 tané (4.8)
cosGocosep o P

substituting 4.8 into 4.7b and solving for sinpd we obtain
sinf® -sinysiné
o P

sing = (4.9)

cosycosf
7608%p

If we take the dot product of the vectors ; (eq. 4.6) and PO we obtain

2
2 {R—r Eos@coseocosep+sineos ine;l}
cos = —
|y|

But from 4.6 we have also

|;|2 = R2 [%+sin27-231n7(cos¢coseocos6p+sineosin9p%
Hence 9 2
8in”y |1l-(cosdcosf cosé +sin9°sin9 )
sin‘c = £ 2 L (4.10)

1+sin27-2sin7(cosocos6p+sineosin6p)

16
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from equation 4.6 we obtain

Hence

r sin@coseo = |;|cosﬁsin1

r [fcochose sind_+sind cose'] = |y|singsina
o p o ' p

tang

-cosdcosf _sind +sind cosd
[+) P [0 P
sin¢cosao

differentiating 4.11 with respect to ® we obtain

dg =

cosé sinf cosb -cosdsind cosd ] do
[ p 0 0 P

1-(cosdcosf cosb +sind sind )2
o p o P

Summarizing the above results:

The points of intersection of the curves C

On 6

and 90 are given by:

2]
%
siny-sineosine
cosd = cos0 cos in terms of 9
o P
sind -sinysind
sing = c057cosep in terms of B
° 2 2
sin 7‘}-(cos¢cose cosf +sind sind ) ]
sin%: = 2 P 2 R
1+sin27-231n7(cos¢c0590c086p+sineos1n9p)
and
cosé Elne cosf_=cosdsind cose-] do
s = o p 0 o )

2
1-(cos¢coseocosep+sineosinep)

17
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Let max ce , min Ce denote the maximum and minimum latitudes of curve C. which

P 6
P
occur at ¢ = 0 or ¢ = x.
When -§<Bp<-7 from Eq. 4.8 we obtain
x -
at ¢ =0 max Cg =3 + Gp 7
2
at d=n min C; = -G+ y+86)
P
When -7<Bp<y from Eq. 4.8 we obtain
x -
at 9 =0 max Ce 2 + Op 7
2
= =-£
at & =0 min Ce ) + Gp +
2
When 7<9p<§ again from 4,8 we obtain
=X -
at o ==n max C6 2 + ep
P
z
at ¢ =0 min Cep -3 + 7+ Gp

Due to the geometrical symmetry it will suffice to consider the case 6p>0.

We distinguish two cases

n
Case I 229&2 max Cep 9p>7

Case II max Cgy >6 2 min C

0 e

P P

Case I - 2
9p>7, 22 902 max Cep

(see Figure 2) 6 does not intersect Cg . Let Ggo be the surface region on
the vehicle bounaed below by Go. Let P( ,60) denote the probability that a
molecule from the point p will hit the rggion Geo.

18
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Then with the aid of 4.15 and 4.16 we obtain

1
r(ep,eo) - ;{! sindcosaidoidp

e
° sind _cosé
P o

sind siny 2x (cos0 - sind _cosé ) do
o o 2]

4x fo

2
_l+sin y
cosd +tan9°tan9p ZSinycoseocosep

Or
sin@osiny
1?(6p ,Go) ==
(4.17)
2
(1+sin 7)sin9°-251n7sinep 2x ao

P R A _ _l+sin2y
o p cos¢+tan9°tan9p zsinycoseocosep

+

In order to evaluate the integral in 4,17 we use the residue theorem by setting

2cosd = z+z'1

Let 2

A = tand tang - —¥8iny

o P 2sinycos@ cosé
o p

Then

2x

do 2 dz

/ —_—a L (4.18)

o cos®+A i zz+2xz+1
The roots of

22420241 = 0 are (4.19)

(2112
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Consider the equation

£(x) = x242M1

we obtain
£(1) = 14201 = 2(1+))
f(-1)= 1-2M1 = 2(1~})
6 +6
But losi.nycos2 =B (l-siny)2
2
=) = 2sin7coseocos6P >0 (4.20)
2 60-6 2
-4sinysin ——3—2 -(l-siny)
I+ = 2sinycosé cosé (4.21)
° p
2 2
Hence I-A'<0 or A"-1>0

That is, equation 4.19 has real roots and on account of 4,20 and 4.21 we
conclude

1/2

-1 A2 1) Y 21 (a2-1) 12

1 1
Hence the residue of 3 within /2/=1 1ig 172

22420241 20:2-1)

it follows f2n a0 =2

o COS®+A 0\2_1)1/2

Therefore 2
sineosiny (l4sin 7)sin€°-231nysin9p
P(ep,eo) = 2 - 7 .12 (4.22)
%oseocosep(?\ =1)

sinsosiny

- . Gn
2 2
where |(1+sin27)sine -ZSinysifEl siny
G = =

1/2
u{[Zsinycos (90+9p)+1+s inzﬂ I:-Zsinycos (eo-ep)+1+s 1027]}

20
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we can easily verify that when 6 = % and 6 coincides with C; (1.e.6 =7y

p
that p(ep,eo) = sinzy as it is expected
When & =6
° P
sinGpsiny (1-sin7)sin7sin6p
P(6_,6 ) = - 4,23
PP 2 2(1+sin27+231n7coszep)1/2
Case II
90 always intersects Ce
P
This occurs when max CG >90>min C9 whether 6p>7 or 9p<7 see Figures 3,
P P
The intersection of 6 and C, 1is given by cosd = —siny . tanf tand
o Gp coseocosep o P

(see Eq. 4.8). Let ¢o be the first intersection, i.e. 0<0<n. Then the other
intersection is -0 , Let G, be the surface area on the vehicle bounded by 60

and CG and for which 6>6°. ep
1%
Then 1
P_,6 ) == [[ sinmxcosadadf =
p’ o n
G
6
o

® sind cosGo
sin@osiny o (cos(D-sin 500 ) at Sin27 n/ZdB
J + f
2n ° 1+sin2 n B
cosf+tand tanf - L °
o P 2sin7coseocos6p

where Bo is given by

sin6 -sinysinb
o P

sinBo = (Eq.4.9)

cosycosO
7€0%%p
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or
sineosiny

P(6,,0,) = )

2n o

2
(l+sin 7)sinB°-2sinysiq€p

+ 4ncosB _cosf
° P

2
sin 7, x _
+ n ( 2 Bo)

do

(4.24)

cosd+tand tanf -
o P

To evaluate 4.24 use the following substitution

x=tan%

2dx

1+x2

do =

2
cosd = 2cos2 % -1= 1x

1+x2
Then
f dd = _2__ f dx
08P+ N1 2 Al
A1
where 2
14sin "y

A= tanBotane -

P 251n7cos6°cosep

Now

a1 (Z1)

2
ML _A-l 2 >0 since KZ-L>O

3l

ot

1+sin?y

2sinycos6 cosb
o P

s

Solving 4.25 for X and setting ¢ = 00 we obtain

1/2
cos(6o ep) siny

1 cos(9°+9p)+sin7

—_

X

where we have taken the positive root since

¢

0<d <x—>tan — = X.>0
0 2 1

22
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Then 4.24 becomes

sinf siny 2 1/2
it L stn’y o x g . g (222) ,
P(9,6,) 5 0, + SB2( % g )-0(0 .6, )ten x1<)*1 (4.26)

where G has been defined in Eq. 4.22

2
and 2l Zsinycos(9°+€p)+1+sin y
M1 -ZSinycos(eo-ep)+L+sin‘7

The formulas 4.22 and 4.26 should have the same value in their common region
of domain.

Set 6 = Max C in Eq. 4,26
o 2]
P
X n
and ®° =3 Bo =3
A1
Then XT———’ L L $# 0
1/2
-1 Al X
Hence tan Xl ()*1> 2

and 4,27 reduces to 4.22,

Also when 90 = min. C, we expect P(Gp,ao) = sinzy

6
P
n
Indeed, 6 == +8_ + vy
o 2 P 1/2
. -1 [l o
x1 = 0——tan x1 N+;] 0

x
<bo 0, Bo =72
PO _,0 ) = sin’

p’o 7

Consider the special case where 90 = Gp = 0

Then sinﬁo =90 Bo ™ 0
Th sin2
en P(ep,eo) = _i_—z (what was expected)
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4.1.2 From the Vehicle to the Chamber Wall

Consider the point P on the vehicle and the curve 6 on the chamber wall
(Figure 4,5). Again we need consider only 9p>0 with two tases,

x
Case I 22?&2 max Cep (Figure 5)

Case II -Max Ce 2902 min CG

P P

(Figure 4)
Let P be a point on the vehicle with position (0, Gp) and let A be a point on

eo such that a<§ (see Figure 4).

If we set up an orthogonal system at P as before and make use of Table
(1.3) we obtain

X = Rsindcosd a (4.27)

+ R [?cosocose sind +sind cosé ] b
o P o P

ol

+ R [%ochosG cosé +sind sin ]
o P o p

«!

= Rsindcosf a (4.28)
+R EcochosG sinf +sind cosG:I b
o 1% o P

+ R{E:os@cose cosf +sinf sind :'- } <
Y P o p

The intersection of the curves Ce

and 6 (if they intersect) is easily found
to be given by P °

cosdPcosO cosf +sind sind =1
o P o p

Hence
- siny -
coso coseocosep taneotanep (4.29)
as before.
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Also

- 2 2 2

ly|] =R [E+sin 7-231n7(cos@coseocosep+sin9°s1n6p{’ (4.30)
1-(cosdcos6é cosd +sind sind )2

sin‘Q = 5 o P o__P (4.31)
l+sin 7-Zfin7(cosOcosGocosep+sinBosinBP)
sinﬂo-sinysinep

SinBo = cosepcosy (4.32)

cose° sing cosGo-cos®sin9°cose ] do
g = P Pa (4.33)

1- (cos®cos6 cosb +sinf sinb )2
0 P o P

In an analogous manner as before (sec., 4.1.1) the following relations can be
derived

When 7<ep<§
= =3
at ® =n Max Ce 2 Gp + 7
P
= = 2
=0 Min C6 2 + ep + v
p
When -7<9p<7
= =X -
at ¢ =0 Max Ce 2 + Gp 4
|4
. X
® =0 Min C6 2 +0_+ vy
p
When - %0 <-
27p 7
X
at & =0 Max Cep 5 + Gp 7

? 14
=g MinC, =-(5+6_+
o (2 P 7)
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z
Case I 229&2 Max Cep (Figure 5)
It occurs when 6 >y. Let Ge be the surface area on the chamber wall for
which 69 . P o
Then
1
P(GP,GO) =2 [[ simcosadads (4.34)
€
o
sind coseo
sind 2x (cos® - 3 <0505 ) do
= 4usiny o 2
1+sin”y
coso+tan6°tan6p ZSinycoseocosep

sinBo (1+sin27)sin6°-231nysin9p 2x

= 2sin + 2 f n:° 2
7 8xsin e 6 ° >+ :
ycosf cos _ 1+ sin o
o p cosd+tand ta P 231n7coseoc089p
_Si'O_L‘;__
2siny Zsinzy

Consider the special case where 6_ = 1, 6 = vy, We expect P(6_, 90) =1, A
substitution easily verifies that this is indeed the case, P

Case ITI Max C9 >6°>Min CG (Figure 4)
P p
As before we find
Sineo l x
P(ep’eo) - 2xsiny 00 + x (E h ao) (4.35)
- 1/2
6O .60 Al
—22 tan X
1\ A1
siny

where G is defined in the same way as for equation 4.26.
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Formulas 4,34 and 4.35 should gtve the same value in their common region
of domain. Indeed {f 6 = Max C, =3 - 6 + 7y 8 >y
o ep 2 P P

1/2
- -2 -1 Al - X
00 n, Bo 29 tan x1<>\+1> 2
4,35 reduces to 4.34,

Also when 60 = Min Ce we expect P(GP,GO) -]

P
- -2 z -
Set 90 2 T ep + 7, 7<B§ 7 or 7<Bp<7
1/2
- --X -1 Al -
o, o, B 2 tan X, <)\+1) 0

and the result follows immediately.

4.1.3 From the Chamber Watl to the Chamber Wall

Consider both the point P and the curve 60 on the chamber wall, Thus
(see Figure 6)

y = -Re + x
= Rsindcos6 a (4.36)
+R I:-cosocose sind +sinb cosb :IE
o P o p
+R [cosocose cosf +sind sind -]] :
o P o P

;1- 2Rcosy | cosBsiny 3+ sinBsiny -b-cosy Z] (4.37)

For the intersection of 90 and Ce (1f they do intersect) we set

- - P
y=y Then

a) sinbcosé = 2cosycosBsiny
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b) -cos@cos60s1n6p+sin90cosep = 2cosysinBsiny

c) cosdcost cosd +sind sind -1 --2c0827
o P o P

from 4.38c) we get

cosd = ceosly _ | tanf tanb
coseocose o P

Substituting 4,39 into 4.38b we get
sinb

_ o
sing = cotZytaan + ———sin27cos9p

Similarly we find

sinza =-;- (l+cosdcosd cosb +sinf sinf )
o P o P
cosf Eine cosf =-cosdsinfg cosd
4 - 0 p o 0
1- (cos®cosd cosf +sind sing )2
o P o P
x x
2 27>0 2 2<0
x Pt p.d X
2276 >277 27-’z'>ep>§ 2y
Max C6= 27-6p Max Ce = x- (27-9p)
p P
Min Ce= -(9p+27) Min CG = -x + 27-1-9p
P P
. n n n
= -2 = .2 -=
2179 " 2 2 "7 03
Max C, = 1(-(27-6p) Max C, = n-(27-9p)
p P
Min Cep = -(Gp + 2y) Min Cep = (27 + Gp)

28
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Loy 2 | -3
2932 Po>2r - 3
Max CG = 27-9p Max Ce = 2y-6
p P
Min Cep = -u+27+9p Min Cep = -x+27+9p

Again we distinguish two cases, Case I when 90 does not intersect C., and

Case II when 80 does intersect CO ap
P

Case I §>e°> Max C,
P

1
r(ep,eo) = {;f sin0icoscidodf

e
P

where Gg, is defined as previously but on the chamber wall. It is easy to see
then that

2x -]
P(6,,6,) = DI cosf .sinepcoseo cos®sing cosé | do
P 1+(cosdcosd cosd cosd +sind sind )
o o P o P

4n ‘o

sind cosGo
sind 2z (coso- sind °°39>
s e __O_ 2 2
A ——
cosd+ taneotanep + c089°¢°°9p
sind sineosinGL 2x 4

+
2 4xcos6 cosf_ ‘o
o P cosdH-tanGotaan + __-coseocosep

1
cosé _cosé
o P

Let A = tanf tand +
Y P

1/2 une°+.1ne

2
(-1 cosf cosb
o P
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As before
£(1) = 2(1+)N) 2
£(2) = 2°4+2)\z+1
f(-1)= 2(1-»)
cos(eo-e )+1 2¢:os2 80-6p
«a—L P . 2
(1+N) cosf cosf cosd cosb >0
o P o P
cos(9°+9 )-1
- = — P
1-A coseocose <0
1/2 1/2
Hence -A- (7\2-1) /<-1<-7\+(7\2-1) / <1
and the residue of 1 within 121 = 1
Zz+27\Z+1
1
is ———————
20\2_1)1/2
2x
d¢ 2 dz 25
It follows | ————— =L e =
o cosdtA i 22+27\z+1 0\2_1)1/2
therefore
1 sineo
P(ep,eo) =5 - (4.43)
Case II Max C, >0 >Min C
[¢] o 2]
P p
Sineo l(x 2
P(ep’eo) =" 2x oo + % (3 -Bo) cos y (4.44)
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—. 2
1 | cos 7+sin9°siggE

Where o, = cos " Zosd cosd
° p
-1 [~ sinBo
50 = gin cot27tan6p+ W

1/2
cos(Go Gp) + cos2y

X, =
1 cos(6°+6p) - cos2y

[%:l]1/2= 1-cos(6°+6 )
M1 sind +sind
) P

Notice that equation 4,54 reduces to equation 4.53 when 9 = Max CG where
Max C =2y- 0 P’ Since,then, P

° 1/2
b.d -1 A1 - X
oo =5, B =2 tan xl(%+1) 2

When 6 =6 =0, thend ==x-2y,B, =0

1/2
t:an-1 X AL =0 and equation 4.54 gives us
I\ A+l '
1 2 ;
P(ep,eo) =5 cos’y for the half illuminated sphere,

4.2 RECAPITULATION
A. From the Chamber Wall to the Vehicle

Extending the previous results to the whole chamber wall we define Ce
as the surface area on the vehicle which is accessible to the point P
and for which

626
=0

and P (ep,eo) as the probability that a molecule leaving the point P will hit

the region G9 .

P

(a) Ge
o
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sinf siny
«-—o G
r(ep,eo) 2 2 (4.45)
(b) Min Ce 5905 Max Ce
P P
sineosiny sinz »
l’(ep’eo) "= % + x (-f '50) (4.46)
1/2
-1 A-1
where -G tan X1<.)\+1>

2sinycos (6 +6 )+1+sin27
A - o _P 3 (4.47)
-281n7cos(6°—6p)+1+sin y

Fos (GO-GD)-siny—JI/2

X, = (4.48)
1 Ifos (6°+6p)+sin7
[El+sin27)sine°-251nysine | siny
G = 2 2 1/2 (4.49)
n {Esinycos(eo-l-ep)+l+sin 7] EZsinycos(Go-ep)+1+sin 7]}
Qo and ﬁo are given by:
- -1| siny _
¢° = cos [cose pyy: taneotanepjl (4.50)
o P
-1 sineo-sinysine
B°= sin R (4.51)

cosycosf
7608%,
with the restrictions that

0<® <x
o

o
'-2.<Bo%
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B. From the Vehicle to the Chamber Wall

6 e

Now 60 and Gp switch surfaces. G, 1is defined as previously. C, 1is
the intersection of the tangent plane at P ° (of the vehicle) with the chafiber

wall,

(a) G completely illuminated from P

%

2 (4.52)
(b) MinC <6 < Max C
=0~

sinf
0

1/2
l/n_ . -1 A1l
P(ep’eo) = 2nsiny ¢o + n (2 Bo) 7 tan |}1 N—l)J (4.53)

2l
A1?

where Xl, G, d)o and Bo

are given by 4.47, 4.48, 4,49, 4.50 and 4.51 respectively,

C. From the Chamber Wall to the Chamber Wall

Both 8 and @_ are on the chamber wall. G9 (now on the chamber wall)
is defined as previously °

(a) 9°> Max Cep

sinBo 1
P6,0,) =-—7 *3 (4. 54)

(b) MinC <9°< Max CG

P P

6

sind 1 2 1 1 1/2
9 1z . Al
p(ep,eo) - qso + - (2 Bo) cos r+ " tan EKI(N_I)J (4.55)

a1 2
where °o’ Bo’ xl, L are given immediately after equation 4.44.
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5.0 COMPUTER LOGIC

The problem of determining analytically the molecular flux distribution
in the cases where discontinuous outgassing characteristics have been assumed
is exceedingly difficult, Consequently we have used a digital computer to ob-
tain solutions to the problem. The types of surface discontinuities we deal
with have been explained previously (see 4.0 Single Surface Discontinuity).

The procedure which is followed for a computer solution consists of parti-
tioning the surfaces into a number of spherical zones, each spherical zomne
having uniform outgassing and pumping characteristics. The probability of
molecular transfer from each point of a spherical zone to another spherical
zone will be considered constant, thus giving rise to a step function along

the meridian of a surface for the probability of transfer from a point, to a
spherical zone. The molecular density of the molecules which leave a spherical
zone will be taken as uniformly distributed on this spherical zone so that the
molecular density along a meridian will assume the form of a step function
also. Thus the exact solution of the molecular flux distribution can be better
approximated by increasing the number of the spherical zones of each surface,

5.1 PARTITION
Both surfaces (chamber wall and vehicle) are partitioned into 2N

spherical zones of width A9 where N is an integer. In numbering the sequence
of these sperhical zones we set

X_= |:(_r-N-1)z9, (r-N)AB]

r

where Xr has been defined previously.
Thus x _=x
oo [5-50
Xz = Bl-N)AG, (2-N)A€]
X1 = [0’ m:l

[z &
XN 'l:z %52
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The choice of N is such that
a) N is reésonable large.
b) The discontinuous line or (lines) are boundaries of spherical zones.
¢) 6 = y is a boundary of a spherical zone.

Obviously, the probability from a point of a latitude GI of a
surface X to a spherical zone YJ is

P (5.1.1)

X¥; " | Pyy (158 1)~y (8140 5,1)

In terms of the partition then Eq. (5.1.1) will denote the probability
from a spherical zone X_ to a spherical zone Y, producing therefore a step

function for the probab%lity distribution of a" surface with respect to a
spherical zone., Clearly then, a sufficient condition that

P =P
XYy &%
is that
K = 2N-I+1, r = 2N-J+1
Hence
leyJ - Px(ZN-I+1) Y(2N-J+1) (5.1.2)

Hence, in view of Eq. (5.3.2) it is sufficient to calculate P for > M1

X ¥y

5.2 PROBABILITY EQUATIONS

The probability equations which will be used in the computer solutions
have been derived previously and appear in section (4.2). In regrouping
these equations for computer use we have

PCV(GIGJ) = as given by (4.45) from chamber (5.2,1)
wall to

PCV(GIOJ) = ag given by (4.46) vehicle (5.2.2)
i—sinBJ

Poo(61:65) = —5— (5.2.3)
oy | o chmer

Poc®1003) =7 = 8187 [ hamber wall (3.2.4)

PCC(GI,OJ) = as given by (4.55) (5.2.5)
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Equations (5.2.1) and (5.2.2) pertain to the case "From Chamber Wall to
Vehicle" while Eqs. (5.2.3)-(5.2,5) pertain to the case "From Chamber Wall
to Chamber Wall", Here we have omitted the case '"From Vehicle to Chamber
Wall" in view of the relation

2
Pyg(0:9)) = Poy(®1,0)) [stn’y (5.2.6)

Thus there are actually two probability matrices which have to be determined,
one for the chamber-vehicle case and the other for the chamber-chamber case.

5.3 PROBABILITY FLOW CHARTS

In all cases we determine the probabilities (P Y(e »8.) for > M1l. 1In
differencing the results by means of Eq. (5.1.1) an§ extending the domain of
J to J<MN+1 by means of Eq. (5.1.2) we obtain the probability matrices P

cv
and PCC'

5.3.1 From Chamber Wall to Vehicle

Since it is sufficient to start with 653Jin view of the relation (5.1.2)

we may begin with GI> y-x/2, For each GIwe have

Lim cGI = 6p4m/2-y  1f O.-7<0

= -91-1-1:/21-7 if 61-7>0

As for the Lim C, , we are only interested in the value of Lim C, when

Lim C, >0, 81" This occurs when GI>ﬂ/2-7 yielding o
I
Lim CGI = o +7-x/2
For GI-7<O

the domain of 8 for a non zero probability is QSBJ<BI+1/2-7 Lim Cy <0
I

91+7-ﬂ/ZSBJ<EI+n/2-7 Lim c91>0
and PCV(GI,GJ) is determined from Eq. (5.2.2)

For GI-7>O
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the domains of GJ are

a) QS$J<-91+n/2+7 Lim C, <0
I
or 6I+7-x/259J<-91+1r/2+7 Lim ceI>0

b) =6 +n/2+7<H <2N

and PCV(GI,G ) is determined by Eq. (5.2.2) for case a) and by (5.2.1) for case
b). In thée f{ow chart we have been using spherical zone sequential numbers.
The corresponding angles to these numbers are:

N-NHl————— 0 = x/2-746, = Lim Cg  0777<0
I
=
2+1——-—)6 7

ZN-N,+1————x/2-y

N+N

N, -MI— 30 = y-x/246_ = Lim C
2 1" =8"%,

NN, +2-T—56 = n/24y-0. = Lim C, 6.-7>0
2 1 o; 1

5.3.2 From Chamber Wall to Chamber Wall

We distinguish two cases I and II
Case I n/4-y>0
We start with eJ = 0 and 61-- n/2

We have
Lim CGI = 61+1t-27 91<27-n/2
= 276, 0 >27-x/2
As for Lim Cgy. we notice that Lim C, =-(6.+2y)>0 when -x/2<8 <~y and for 6>"7s
== 6 I J
Lim C6 <0 in ~ all cases. 1
I
a) For 61<27-n/2
the domains of OJ are
1) 0<8,<-(6,+27)
1f Lim C, >0
ii) '(61+27)593 91-!1(-27 I
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or
1ii) 0<0.<6_+n-27y if Lim C, <0
-J 1 - OI

In case Ia, the Probabilities P 0 ) are determined by Eq. (5.2.4)
for i) and by (5.2.5) for ii) and by E § 2.5) for iii)

b) For GI>27-u/2

the domains of 9J are

iv) QSEJ<-(6I+27)

if Lim C_ >0
v) -(91+27)5£J<27-9I 9I
vi) 27-6ISBJ<K/2
or
vii) 0< <276 Lim CeI<°
viii) 2y-6,<0 <n/2 Lim CeI>°
or
ix) 0<B <n/2 if Lim C, <0
- J 91

Then Eq. (5.2.3) for calculating P (6 ,0 ) is used in the cases iv)
while Eq. (5.2.4) is used for the cases v? and vii) and Eq. (5.2.5) for the
cases vi), viii) and ix).

The corresponding angles to the sequential numbering which appears in
the flow chart are

2(WF1-N,))-I—>6

- (0+27)= Lim C

2(N-N, I ——6 x-zra-eI=Enc , 6,<2y-x/2

o1

2NALl——>6 = 2y-n/2

N-2N,+1——>6 =-2y

Case II x/4-y<0

In this case we start with GJ = 0 and 6f>27-u

38



AEDC-TDR.63.88

We have
Lim CeI = 61+n-27 61<27-n/2
= 27-GI GI>27-x/2
As for Lim C, we have
—_— e
I
LimC, = -(8.+27) 1f 6_+2y<n/2
— 91 I I
= 91+27-n if 91+2¢>n/2
c) 61<27-n/2
The domain of GJ is
x) 059J<BI+1-27 im C91<0
xi) GI+27-ﬂ_<_9J<61+n-27 Lim CGI>0
da) 91>27-n/2
The domain of GJ is
xil) 0B <2y-6; ;.gce;o
xiil) 27-6.<6 ;<x/2
or
xiv) 91+27-159J<27-6I Lim CGI>0

xv) 27-9I59J<h/2

Eq. (5.2.3) is used for the cases xiii) and xv) while (5.2.5) is used
for all the other cases in c¢) and d).
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The corresponding angles to the sequential numbering which appears in
the flow chart are

2NN+ I————6 = 6,4x-2y = Lim caI 6, <2y-x/2
NHLl————50 = 2y-1/2

IN-2N Hl————t0 = x-2y

2(Ny"N)+I—————0 = 6.+2y-x = Lim c61 0.+27>x/2
2N H1)-I——36 = 27-0, = Lim c91 0 >2y-x/2

5.4 MOLECULAR TRANSFER FLOW CHARTS
(single discontinuity on the chamber wall)

The area of a spherical zone of width A9 on a sphere of radius v is

4rrlsin %cos(e-rgi) (5.4.1)

If, however, X9 is small we may set
sin—— = &
and the spherical zone area will be

anzcos (e+§ﬁ)ae (5.4.2)

Thus, the flow which will hit a spherical zone Y, due to the flow which
leaves a spherical zone X. is (Area of X.)(density of ¥low leaving X )P

where X,Y are any combina'gion of C, V except the combination V,V. xJYI
The flow which leaves a spherical zone VI in the time interval
() r<r<(mt+2)r 1is
2 N 2
2:trv cosGIp(VI)m_l = (l-& )J§12ur coseJAﬁp(C ) PC VI (5.4.3)

Similarly, the flow which leaves the spherical zone C during the time
interval (nt+l)T<r<(ot2)r is

K J=1 JI
ABp(V ) P

2N
2 2 2
Zxrc coserp(CI)m_l = (1= a, )= ’Zxr cosOJAHp(C ) Pc c +Zxr coseJ (5.4.4)

VC
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where
cosBJ = cos(6J+€Q) (5.4.5)
K=1 (11N, (5.4.6)
=2 N151<2N

Noting that r 2/r 2 sin27, P =P /sin27 (see Equation 5.2,6)
v'Te VJCI CJYI

and denoting cos@Ip(XI)n bch(XI)n, Eqs. (5.4.3) and (5.4.4) are rewritten

as follows:

2N
2
o(VI)n+1= (l-av)/sin y Z coser(CJ)nPc v (5.4.7)
J=1 J'L
2N
0(C.) .= (l-a, X cos®, |p(C.) P +p(V.) P (5.4.8)
I'nt+l K J=1 J J'n CJCI Jn CJVI

where K is defined by (5.4.6). The flow chart for the molecular
transfer is self-explanatory. The molecular incidence for each
spherical zone X_ is found by the relation

I
2 ©0 -]
2 r, 08 o(X;) 4y Zo(Xp) g
- n=0 - n=0_ (5.4.9)
RXI 2 (l-ax )coseI
2 Ty ABcosGI(l-axI) I

The infinite series, however, is very rapidly coverging and in most
cases it is sufficient to take n=10 or less.

5.5 MODIFIED APPROACH TO THE COMPUTER SOLUTION

This approach is formulated in matrix notation and has the following
advantages over the approach described previously.

a) There are no limitations to the number of surface discontinuities
of the parallel type.

b) It is sufficient to know only the initial flows. Thus, calculations
of flows which leave the surfaces in subsequent time intervals are
unnecessary.

c) The final solution to the flux distribution is not the result of a
chopped off summation of an infinite series.

d) It is free of errors introduced in the calculations of the flows
which leave the surfaces during nr<t<(mtl)r, n>2,
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5.5.1 Matrix Notation

Fx(n)

o)

H] ]
SRR

XY

X%

42
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being the lower latitude of the I'th spherical zone.
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5.5.2 Molecular Tronsfer

The following difference equations are easily derived

2N
F, (m+l) = (l-a, ) = P (5.5.2.1)
Yy Vi 11 1Y CI(“)

2N
F, (ntl) = (1- a, )z (n)+P (n) (5.5.2.2)
CJ J I= l[jv C V CIC C i}

In matrix notation the above two equations take the form

AR o Fo(n) (5.5.2.3)

Fc(n+1) = A, |:'vc V(n)+P ce C(n):l (5.5.2.4)

where the primes denote transpose matrices.

Fv(n+1)

The boundary conditions then are

2
FV(O) = Zurv fa'?) AVEFV (5.5.2.5)
FC(O) = an L‘B ACEFC (5.5.2.6)
From (5.5.2.3) and (5.5.2.4) in view of (5.5.2.5) and (5.5.2.6) we
obtain
= 2 ' 2
Fv(l) = anc ABAVP CVACEFC (5.5.2.7)
= 2 op! 2 2.8
Fo(1) = A, Enrv 9P A EF, +2xr " r6P' CCACEFC:I (5.5.2.8)
Substituting (5.5.2.3) into (5.5.2.4) we obtain
= ] ' ! e Jdes
Fo(m2) = A Evc“vP cvFe (P ¢ c('"'l)j] (5.5.2.9)
Summing up (5.5.2.9) from n = 0 to N = and solving for HC we obtain
Pl 1) -1
= A LV V_CV '
HC I AC > +P cc (5.5.2.10)
sin"y
(0)
FC(1)+ cv“vI eve
sin y

where I is the unit matrix.
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Similarly, summing up (5.5.2.3) from n= 0 to n = » we obtain

H, = AVP'CV EIC'I'FC(Oi] (5.5.2.11)

5.5.3 Molecular Flux Distribution

Since the area of the I'th spherical zone on surface X is 2nr 2cose AH
where 8, = (I-N-3)9 = 9.+ 58

X

the rate of incidence on this spherical zone is

M

1
Ry = 2 (5.5.3.1)
1 21(rX cosGIAB (l-aXI)

Hence, in matrix form

-1
(EA,)
Ry = ;Ml—z—-ﬂl (5.5.3.2)

anx Ja'2)

Then from (5.5.2.10) and (5.5.3.2) we obtain

-1
{ EA -A liCVAVP eV . pr EA T  (5.5.3.3)
cc C
sin7

where
= ] 1 ——————
T AC {P CVAVEFV+ P CC+ 2 ACEFC

Similarly, from (5.5.2.11) and (5.5.3.2) we obtain

(EAV)
R, = - AR oy |:EACRC+ACEFCj| (5.5.3.4)
s n 4
E'1 .
= Pl ovBhc E“'F]
sin 7
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6.0 COMPUTER RESULTS

For studying general trends in the molecular flux distribution on the
chamber-vehicle surfaces, a variety of cases were chosen and the results were
plotted on semilog paper (see figures 16-26). Each of these figures contains
two graphs for the molecular flux distributions, one for the chamber wall
(dotted curve) and the other for the vehicle (circle curve). The cases under
study were chosen in terms of the following parameters.

a) Size of sun (large and small)

b) Size of vehicle (large and small)
c¢) Pumping coefficients

d) Source of outgassing

The size of the sun is determined by the discontinuous line N, while the
size of the vehicle 1s determined by the magnitude of N,. For the size of the

sun and the vehicle there were chosen two values for N1 and N2

N1 = 30 Large size sun
33 Small size sun

N, = 6 Large size vehicle (y=30°)
= 3 Small size vehicle (y=15°)

The different combinations of a), b), ¢), and d) making up the different test
cases are shown in the following table.

TABLE OF TEST CASES

2N = 36
Case B K 202 4 L L 3 i
1 30 6 9 0 0 o 1 o0 10
2 33 6 .9 o 1 o0 10
3 33 3 9 o 1 o0 10
4 30 6 .95 o 1 0 10
s 30 6 .8 o 1 o0 15
6 30 6 .9 1 0 0 10
7 3 6 .9 o o 1 10
8 30 .8 o o 1 15
9 33 3 .9 o o 1 10
10 30 6 9.1 .1 3.5 1 10
11 30 6 9 1 L1 oL L1 1 10
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Looking at these graphs we can point out a number of interesting phenomena,
Generally speaking, in the cases of a non-outgassiny vehicle the flux distri-
butions on the chamber wall and on the vehicle cross each other at a point.
It is not as much the size of the sun as it is the size of the vehicle which
affects this crossing point. A comparison between cases 1) and 2) (Figures
16 and 17) shows that the crossing point has been affected by .less than 5°
while between cases 2) and 3) (Figures 18 and 19) the crossing point has been
displaced by 207, Also a slight increase in the pumping coefficient on the
chamber wall will hardly affect the crossing point as it can be seen from
cases 1) and 4) (Figures 16 and 19). An interesting phenomenon is presented
in case 6 (Figure 21). The two flux distributions almost coincide. If the
area of the sun shrinks to zero we have the uniform case of outgassing chamber
wall., Then the molecular flux on the unpumping areas is Fc(l-ac)/a on both
the chamber wall and the vehicle as it can be seen from equation 3.9.5.

Setting Fc= 1 and a, = .9 we find
Fc(l-ac) 1
a, 9

Thus in case 6 the flux distributions on both surfaces of the chamber wall and
of the vehicle are equal and 10 times as much the flux distributions in the
uniform case. From this observation it appears that the presence of a non-
pumping non-outgassing sun will have a very slight effect on the uniformity

of molecular flux distribution, Of course, this cannot be the case for all
sizes of vehicle, From the ratio of the area of the sun to the area of the
vehicle in case 6 we can state safely that both fluxes are equal to a constant
depending on the size of the sun as long as

sun area
vehicle area =°

As we have implied above, in the cases of predominantly outgassing vehicle

the two fluxes do not cross each other. Further, the flux distribution on the
chamber wall remains practically uniformly distributed, apart from a slight
negligible variation, while the flux on the vehicle, increases from a minimum
at 6 = -x/2 to a point between 0° and 30 above the equation at a constant
rate and from that point on at a higher rate leveling off around 6 = n/2,

Case 7 is the superposition of cases 1, 6 and 10 each multiplied by an
appropriate factor if we neglect the pumping coefficient ac2 and a,,., Thus if
we multiply case 1 by .5 and case 6 by .3 and substract the sum of these two
results from case 10 we will obtain approximately case 7. To see this let us
select three points 8 = -x/2, 0, /2 1+d_ denotes the flux of the I'th case
at any 6 we must have d -dl -(.5d1+.3d6) either on the chamber wall or on
the vehicle. Consider Zhe glux ofi the chamber wall at 6 = x/2,
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a = 4.9248x10°2, d_ = 1.0238, d, = 5.4276x10" a, = 2.4138x10"

6

d10 - (.5d1+.3d6) = ,23316

At 6 =0

4, = 9.1821x10°2, d, = 1.0154, d , = 6.2723x10""

6 0

a, = 2.9613x10" !

-1
d10 = (.5d1+.3d6) = 2,7670x10

At 6 = 5/2

d, = 1,9230x10"}, d

-1
1 = 1,0107, d10 = 6,527x10

6

4 = 2.8306x10"

d10 - (.5d1+.3d6) = .25334

The agreement is better at 6 = n/2 and becomes less accurate with increasing
6. This is of course due to the fact that we have discarded the pumping
coefficient ap, and a, in case 10, The flux distribution on the vehicle can
be considered %n a similar way. Thus, if N,, agp, ac, and a_, are kept fixed,
the results of any combination of source ou%gassing can be ogtained from a
linear combination of the following three cases

1) ¢, =1,4q, =q=0
i) q; =0,49, =1,9=0
iii) 9 =4 = 0, q=1
The superposition principle becomes also useful in the cases where many types
of gases are considered with independent pumping and outgassing characteristics

for each type of gas. The solution then in that case is obtained by superim-
posing the individual solutions for each type of gas,
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FIGURE 2
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FIGURE 3
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FIGURE 8
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FIGURE 9
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FIGURE 10

58



AEDC.TDR.63.88

FIGURE 11
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FIGURE 13
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FIGURE 14
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FIGURE 15
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